Affiliation:
1. Chongqing Jiaotong University, School of Information Science and Engineering, Chongqing 400074, China
2. Chongqing Weibiao Technology Co., Ltd., Chongqing 401121, China
Abstract
When a compound fault occurs, the randomness and ambiguity of the gearbox will cause uncertainty in the collected signal and reduce the accuracy of signal feature extraction. To improve accuracy, this research proposes a gearbox compound fault feature extraction method, which uses the inverse cloud model to obtain the signal feature value. First, EEMD is used to decompose the collected vibration signals of gearbox faults in normal and fault states. Then, the mutual information method is used to select the sensitive eigenmode function that can reflect the characteristics of the signal. Subsequently, the inverse cloud generator is used to extract cloud digital features and construct sample feature sets. On this basis, the concept of synthetic cloud is introduced, and the cloud-based distance measurement principle is used to synthesize new clouds, reduce the feature dimension, and extract relevant features. Finally, a simulation experiment on a rotating machinery unit with a certain type of equipment verifies that the proposed method can effectively extract the feature of gearbox multiple faults with less feature dimension. And comparing with the feature set extracted by the single cloud model, the results show that the method can better represent the fault characteristic information of the signal.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献