Affiliation:
1. Differential Equations, Continuum Mechanics and Applications, School of Computational and Applied Mathematics, University of the Witwatersrand, Wits 2050, South Africa
Abstract
The relationship between first integrals of submaximal linearizable third-order ordinary differential equations (ODEs) and their symmetries is investigated. We obtain the classifying relations between the symmetries and the first integral for submaximal cases of linear third-order ODEs. It is known that the maximum Lie algebra of the first integral is achieved for the simplest equation and is four-dimensional. We show that for the other two classes they are not unique. We also obtain counting theorems of the symmetry properties of the first integrals for these classes of linear third-order ODEs. For the 5 symmetry class of linear third-order ODEs, the first integrals can have 0, 1, 2, and 3 symmetries, and for the 4 symmetry class of linear third-order ODEs, they are 0, 1, and 2 symmetries, respectively. In the case of submaximal linear higher-order ODEs, we show that their full Lie algebras can be generated by the subalgebras of certain basic integrals.
Funder
National Research Foundation
Subject
General Engineering,General Mathematics