Fast Tensor-Based Joint Estimation for Time Delay and Angle of Arrival in OFDM System

Author:

Du Jinzhi1ORCID,Cui Weijia1ORCID,Ba Bin1,Jian Chunxiao1,Xu Haiyun1ORCID

Affiliation:

1. National Digital Switching System Engineering & Technological Research Center, Zhengzhou 450001, Henan Province, China

Abstract

Nowadays, the joint estimation of time delay (TD) and angle of arrival (AOA) using conventional vector structure suffers from the considerable complexity of multidimensional spectrum search. Therefore, a fast estimation method using orthogonal frequency division multiplexing (OFDM) technology and uniform planar array (UPA) is proposed in this paper, which adopts low-complexity tensor-based operations and spatial-frequency features to reconfigure the channel frequency response. To begin with, the array response is integrated with the OFDM signal characteristics to build an extended array in tensor form. Afterwards, we process the covariance matrix of the tensor structure by CANDECOMP/PARAFAC decomposition (CPD) to separate the respective signal subspaces of TD and AOA estimates. Finally, we conduct a one-dimensional (1-D) spectrum search to locate the TD estimates and a two-dimensional (2-D) spectrum search to locate the AOA estimates. The simulated performance demonstrates that the proposed algorithm offers precise estimates at low signal-to-noise ratios in a multipath environment and outperforms traditional vector-based algorithms with respect to computational complexity.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

Reference24 articles.

1. An Improved Unique Word DFT-Spread OFDM Scheme for 5G Systems

2. Performance Analysis of IEEE8O2.16 Based Cellular MAN with OFDM-256 in Mobile Scenarios

3. Ofdm modulation schemes for military satellite communications;L. Wang

4. On the performance of mimo ofdm-based intra-vehicular vlc networks;B. Turan

5. Research on Underwater Acoustic Communication System Based on OFDM-OAM

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3