Study on the Genetic Differences in Reservoir Characteristics Based on the Bidirectional Provenance of the Yanchang Formation in the Jiyuan Area, Ordos Basin, China

Author:

Tong Qiang1ORCID,Xia Zhaohui1,Huang Jixin1,Wu Junchang1,Wang Yusheng1,Meng Zheng1,Zhang Chaoqian1

Affiliation:

1. Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China

Abstract

Ordos Basin is a Mesozoic sedimentary basin that underwent long-term evolution on the North China Craton. Many scholars have confirmed that in the Late Triassic, the basin was surrounded by ancient continents, and there were multiple provenance supply directions. Combined with the nature of the basement of the basin and the characteristics of the present structure, it is believed that the Jiyuan area is located in the central and western parts of the basin, spanning two first-level structural units, the Tianhuan Depression and the Yishan Ramp. This special geographical location makes Jiyuan area affected by bidirectional provenance. Controlled by the northwest and northeast depositional systems in the basin, Jiyuan area has accepted complex sedimentation and diagenesis, forming a low-porosity ultralow-permeability reservoir. However, the understanding of bidirectional provenance has been neglected in many previous studies on reservoir characteristics in the Jiyuan area. Therefore, the differential evolution of sedimentation and diagenesis caused by bidirectional provenance will cause serious deviations in the original understanding of reservoir characteristics in the Jiyuan area, which will inevitably affect subsequent exploration and development research work. In this paper, the mineral composition, physical properties, diagenesis, and diagenetic evolution of the Jiyuan area are studied by combining a large number of tests such as core physical properties, casting thin sections, scanning electron microscopy, cathodoluminescence, and X-ray diffraction. Then, the origins of reservoir development in two areas dominated by bidirectional provenance are analyzed and compared. Furthermore, the diagenetic facies are characterized by a cluster analysis of logging data, and finally, the reasons for the differences in reservoir distribution and the genetic mechanism between the Yinshan provenance area (YPA) and Alxa provenance area (APA) are obtained. The results show that, first, due to the different provenance, compared with the YPA, the reservoir pore space in the APA is better developed and the physical properties are better. Second, the clay mineral content and diagenesis are more important causes of reservoir differentiation, and the reservoir pores in the YPA are more affected by kaolinite and chlorite filling than those in the APA. Although more dissolution improvements have been obtained, the damage to the reservoir caused by cementation in the middle and late stages is extremely fatal, while the chlorite film in the APA reservoir has a better protection effect on the primary intergranular pores. Third, after the evolution of pores in the APA reservoir, more intergranular pores are preserved, and the distribution range of high-quality diagenetic facies is wider than that in the YPA. Finally, sedimentation is the basis for high-quality reservoir development, and good mineral content composition and favorable diagenetic transformation cause reservoir dissimilarity.

Funder

CNODC

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Reference57 articles.

1. 非常规源岩层系油气形成分布与前景展望

2. Diagenetic facies distribution in high resolution sequence stratigraphic framework of Chang 8 oil layers in the Jiyuan area;J. Lai;Geology in China,2014

3. The genesis of sandbody in the shallow delta from Chang 81 of Jiyuan area in Ordos Basin;S. T. Li;Natural Gas Geoscience,2013

4. Short-term base level cycle and reservoir genesis analysis of Chang 8 oil reservoir set in Jiyuan Oilfield;H. B. Zhao;Lithologic Reservoir,2014

5. Sandbody structure and its genesis of shallow-water delta of Chang 81 reservoir in Jiyuan area, Ordos Basin;G. Z. Liu;Lithologic Reservoir,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3