Control Optimization of Stochastic Systems Based on Adaptive Correction CKF Algorithm

Author:

Hu FengJun1ORCID,Zhang Qian2,Wu Gang3

Affiliation:

1. Institute of Information Technology, Zhejiang Shuren University, Hangzhou, Zhejiang, China

2. School of Overseas Chinese, Capital University of Economics and Business, Beijing, China

3. Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Gustav Mahlerlaan 3004, Amsterdam 1081LA, Netherlands

Abstract

Standard cubature Kalman filter (CKF) algorithm has some disadvantages in stochastic system control, such as low control accuracy and poor robustness. This paper proposes a stochastic system control method based on adaptive correction CKF algorithm. Firstly, a nonlinear time-varying discrete stochastic system model with stochastic disturbances is constructed. The control model is established by using the CKF algorithm, the covariance matrix of standard CKF is optimized by square root filter, the adaptive correction of error covariance matrix is realized by adding memory factor to the filter, and the disturbance factors in nonlinear time-varying discrete stochastic systems are eliminated by multistep feedback predictive control strategy, so as to improve the robustness of the algorithm. Simulation results show that the state estimation accuracy of the proposed adaptive cubature Kalman filter algorithm is better than that of the standard cubature Kalman filter algorithm, and the proposed adaptive correction CKF algorithm has good control accuracy and robustness in the UAV control test.

Funder

Zhejiang Shuren University

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3