Gene Expression Profiles of Peripheral Blood Monocytes in Osteoarthritis and Analysis of Differentially Expressed Genes

Author:

Shi Ting1,Shen Xiongjie2ORCID,Gao Ge3ORCID

Affiliation:

1. Department of Clinical Laboratory, Hunan Provincial People’s Hospital, Changsha 410005, Hunan, China

2. Department of Spine Surgery, Hunan Provincial People’s Hospital, Changsha 410005, Hunan, China

3. Department of Clinical Laboratory, Xiangya School of Medicine, Central South University, Changsha 410005, Hunan, China

Abstract

Background. There is little understanding of the molecular processes involved in the pathogenesis of osteoarthritis, limiting early diagnosis and effective treatment of OA. Use of genechips can provide insights into the molecular pathogenesis of diseases. In this study, determination of gene expression profiles of osteoarthritis peripheral blood mononuclear cells will allow exploration of the molecular pathogenesis of OA and find out more candidate biomarkers and potential drug targets of OA. Result. A total of 1231 DEGs were screened out including 791 upregulated DEGs and 440 downregulated DEGs. The most significant upregulated DEG was RPL38, which may inhibit chondrocyte differentiation and synthesis of the extracellular matrix. PIK3CA, PIK3CB, PIK3CD, PIK3R1, MAPK14, IL1A, JUND, FOSL2, and PPP3CA were the gene symbols of the osteoclast differentiation pathway which was the most significant pathway enriched by DEGs. However, the MAPK signaling pathway occupied the core position of all the pathways which can regulate apoptosis, cell cycle, wnt signaling pathway, p53 signaling pathway, and phosphatidylinositol signaling system. Furthermore, PI3Ks may regulate IL1A, JUND, FOSL2 and PPP3CA through the MAPK signaling pathway. Conclusion. These identified DEGs and pathways may be novel biomarkers to monitor the changes of OA and can be a potential drug target for the treatment of OA.

Funder

Hunan Provincial Natural Science Fund

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3