Affiliation:
1. Department of Mathematics, Monroe County Community College, Monroe, MI 48161-9746, USA
Abstract
The linearly damped oscillator equation is considered with the damping term generalized to a Caputo fractional derivative. The order of the derivative being considered is . At the lower end the equation represents an undamped oscillator and at the upper end the ordinary linearly damped oscillator equation is recovered. A solution is found analytically, and a comparison with the ordinary linearly damped oscillator is made. It is found that there are nine distinct cases as opposed to the usual three for the ordinary equation (damped, over-damped, and critically damped). For three of these cases it is shown that the frequency of oscillation actually increases with increasing damping order before eventually falling to the limiting value given by the ordinary damped oscillator equation. For the other six cases the behavior is as expected, the frequency of oscillation decreases with increasing order of the derivative (damping term).
Subject
Applied Mathematics,Analysis
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献