ANN-Based Control of a Multiboat Group for the Deployment of an Underwater Sensor Network

Author:

Michailidis Emmanouel T.12,Tuna Gurkan3ORCID,Gezer Gülsüm4,Potirakis Stelios M.2,Gulez Kayhan4ORCID

Affiliation:

1. Department of Digital Systems, School of Information and Communication Technologies, University of Piraeus, 80 Karaoli & Dimitriou Street, 18534 Piraeus, Greece

2. Department of Electronics Engineering, Technological Education Institute of Piraeus, 12244 Aigaleo, Greece

3. Department of Computer Programming, Trakya University, 22020 Edirne, Turkey

4. Department of Control and Automation Engineering, Yildiz Technical University, Esenler, 34220 Istanbul, Turkey

Abstract

Underwater sensor networks (USNs) can be used for several types of commercial and noncommercial applications. However, some constraints resulting from the nature of aquatic environments severely limit their use. Due to constraints such as large propagation latency, low-bandwidth capacity, and short-distance communications, a large number of USN nodes are deployed to provide reliability in most applications. In this study, an unattended deployment approach based on the use of an autonomous boat group is proposed. A map of the deployment zone and optimal locations of USN nodes are fed into the onboard computers of the boat group. After processing these data and determining paths to be followed, the boat group deploys sensor nodes at predetermined locations. During the deployment, the boat group is controlled by an artificial neural network- (ANN-) based control system for reducing path errors. A set of performance evaluations is given to prove efficiency of the proposed control system. Performance results show that the boat group can successfully follow a predefined path set and deploy USN nodes. The tradeoffs between energy consumptions, end-to-end delay, and number of hops between underwater relay nodes of energy-efficient USN are also examined. The results indicate that increasing the number of hops reduces the total energy consumption and the end-to-end delay.

Funder

Yildiz Technical University

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3