Detection of COVID-19 Using Protein Sequence Data via Machine Learning Classification Approach

Author:

Aminah Siti1ORCID,Ardaneswari Gianinna1ORCID,Husnah Mufarrido1ORCID,Deori Ghani1ORCID,Prasetyo Handi Bagus1ORCID

Affiliation:

1. Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, 16424, Indonesia

Abstract

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in late 2019 resulted in the COVID-19 pandemic, necessitating rapid and accurate detection of pathogens through protein sequence data. This study is aimed at developing an efficient classification model for coronavirus protein sequences using machine learning algorithms and feature selection techniques to aid in the early detection and prediction of novel viruses. We utilized a dataset comprising 2000 protein sequences, including 1000 SARS-CoV-2 sequences and 1000 non-SARS-CoV-2 sequences. Feature extraction provided 27 essential features representing the primary structural data, achieved through the Discere package. To optimize performance, we employed machine learning classification algorithms such as K-nearest neighbor (KNN), XGBoost, and Naïve Bayes, along with feature selection techniques like genetic algorithm (GA), LASSO, and support vector machine recursive feature elimination (SVM-RFE). The SVM-RFE+KNN model exhibited exceptional performance, achieving a classification accuracy of 99.30%, specificity of 99.52%, and sensitivity of 99.55%. These results demonstrate the model’s efficacy in accurately classifying coronavirus protein sequences. Our research successfully developed a robust classification model capable of early detection and prediction of protein sequences in SARS-CoV-2 and other coronaviruses. This advancement holds great promise in facilitating the development of targeted treatments and preventive strategies for combating future viral outbreaks.

Funder

Universitas Indonesia

Publisher

Hindawi Limited

Subject

Applied Mathematics

Reference24 articles.

1. The outbreak of COVID-19: An overview

2. The Top Ten Algorithms in Data Mining

3. Learning k for kNN classification;M. Zong;ACM Transactions on Intelligent Systems and Technology,2017

4. Protein kinase inhibitors’ classification using K-Nearest neighbor algorithm

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3