Bayesian Probabilistic Framework for Damage Identification of Steel Truss Bridges under Joint Uncertainties

Author:

Zheng Wei1ORCID,Yu Yi1

Affiliation:

1. Department of Civil and Environmental Engineering, Jackson State University, 1400 J. R. Lynch Street, P.O. Box 17068, Jackson, MS 39217, USA

Abstract

The vibration-based structural health monitoring has been traditionally implemented through the deterministic approach that relies on a single model to identify model parameters that represent damages. When such approach is applied for truss bridges, truss joints are usually modeled as either simple hinges or rigid connections. The former could lead to model uncertainties due to the discrepancy between physical configurations and their mathematical models, while the latter could induce model parameter uncertainties due to difficulty in obtaining accurate model parameters of complex joint details. This paper is to present a new perspective for addressing uncertainties associated with truss joint configurations in damage identification based on Bayesian probabilistic model updating and model class selection. A new sampling method of the transitional Markov chain Monte Carlo is incorporated with the structure’s finite element model for implementing the approach to damage identification of truss structures. This method can not only draw samples which approximate the updated probability distributions of uncertain model parameters but also provide model evidence that quantify probabilities of uncertain model classes. The proposed probabilistic framework and its applicability for addressing joint uncertainties are illustrated and examined with an application example. Future research directions in this field are discussed.

Funder

Institute for Multimodal Transportation at Jackson State University

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3