Experimental Investigation of AA6063 Welded Joints Using FSW

Author:

Rajkumar T.1ORCID,Radhakrishnan K.1ORCID,Rajaganapathy C.2,Jani S. P.3ORCID,Ummal Salmaan Nowshadth4ORCID

Affiliation:

1. Department of Mechanical Engineering, K. Ramakrishnan College of Technology, Samayapuram, Trichy 621 112, Tamil Nadu, India

2. Department of Mechanical Engineering, Government College of Engineering Srirangam, Trichy 620012, India

3. Department of Mechanical Engineering, Marri Laxman Reddy Institute of Technology and Management, Hyderabad 500043, India

4. Aksum University, Aksum, Ethiopia

Abstract

The AA6063 aluminium alloy has gained widespread use in manufacturing the light-weighted structures which requires a high strength to weight ratio, and it possesses an excellent corrosive resistance in T6 heat-treated (solution heat treated and artificially aged) condition. The process of friction stir welding (FSW) is an emerging joining process of solid state that does not melt and recast the material being welded, as opposed in various other fusion welding processes, which are extensively utilized for combining the structural alloys of aluminium. The process of connecting separate components with external heat has resulted in induced stress on metals. The stir welding using friction was introduced in order to reduce the formation in residual stress during the joining process. The aluminium alloy AA6063 plates were fused utilising the friction stir welding procedure in this study. The studies were carried out using various combinations of speed in rotary condition, speed in transverse condition, and stress in axial condition. The generated joints that are welded was analysed mechanically and microstructurally. The maximum hardness of the mechanical joints produced is 93.25 HV, and the maximum tensile strength is 286.15 N/mm2. According to the results of the response surface analysis, transverse and rotary velocities possess a notable impact in hardness and durability, respectively.

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3