Bio-Oil Upgrading over ZSM-5 Catalyst: A Review of Catalyst Performance and Deactivation

Author:

Kariim Ishaq123ORCID,Swai Hulda4ORCID,Kivevele Thomas12ORCID

Affiliation:

1. School of Materials, Energy, Water and Environmental Sciences (MEWES), Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania

2. Biofuel Research Group, Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania

3. Chemical Engineering Department, Federal University of Technology, Minna PMB 65, Nigeria

4. School of Life Sciences and Bioengineering (LiSBE), Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania

Abstract

Due to population explosion and industrialization, waste biomass and polymer conversion into biofuel has attracted the interest of researchers. The application of the ZSM-5 catalyst for bio-oil upgrading into renewable biofuels has attracted researchers’ efforts as an excellent catalyst. The need for improved biofuel quality with reduced oxygenates has further necessitated the application of catalyzed upgrading techniques. The catalytic performance of the ZSM-5 catalyst was attributed to its exceptional pore structure and window architecture and when it is incorporated with some selected transition metals to improve aromatic hydrocarbon formation. The review revealed that the development of coke deposit on the microspores of the ZSM-5 catalyst hindered the effective transport of large molecular compounds into the active sites for an easy deoxygenation process. Hence, the introduction of mesoporosity, hybrid catalyst development, and tailored crystal growth on the ZSM-5 catalyst could address several hindrances associated to conventional ZSM-5. Therefore, the need for catalyst modification is paramount for ZSM-5 performance during bio-oil upgrading.

Funder

UM6P/EPFL Excellence in Africa Initiative

Publisher

Hindawi Limited

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3