Cardioprotective Effect of (Z)-2-Acetoxy-3-(3,4-Dihydroxyphenyl) Acrylic Acid: Inhibition of Apoptosis in Cardiomyocytes

Author:

Guo Wei1ORCID,Wang Zhijun1ORCID,Jue Hao1,Dong Chunnan1,Yang Cheng2ORCID

Affiliation:

1. Department of Pharmacology, School of Pharmacy, Fudan University, No. 826, Zhangheng Road, Pudong New District, Shanghai 201203, China

2. Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai 200032, China

Abstract

Background. Although many studies have been performed to elucidate the molecular mechanisms of heart failure, an effective pharmacological therapy to protect cardiac tissues from severe loss of contractile function associated with heart failure after acute myocardial infarction (MI) has yet to be developed. Methods. We examined the cardioprotective effects of (Z)-2-acetoxy-3-(3,4-dihydroxyphenyl) acrylic acid, a new compound with potent antioxidant and antiapoptotic activities in a rat model of heart failure. (Z)-2-Acetoxy-3-(3,4-dihydroxyphenyl) acrylic acid was systemically delivered to rats 6 weeks after MI at different doses (15, 30, and 60 mg/kg). Cardiac function was assessed by hemodynamic measurements. The expression of proinflammatory cytokines, apoptosis-related molecules, and markers of adverse ventricular remodeling was measured using RT-PCR and Western blot. Results. Treatment with (Z)-2-acetoxy-3-(3,4-dihydroxyphenyl) acrylic acid significantly improved cardiac function, in particular by increasing dP/dt. Simultaneously, the expression of the proinflammatory cytokines TNF-α and IL-1β was markedly reduced in the treatment group compared with the MI group. In addition, (Z)-2-acetoxy-3-(3,4-dihydroxyphenyl) acrylic acid-treated tissues displayed decreased expression of Bax, caspase-3, and caspase-9 and increased expression of Bcl-2, which was in part due to the promotion of Akt phosphorylation. Conclusion. These data demonstrated that (Z)-2-acetoxy-3-(3,4-dihydroxyphenyl) acrylic acid possesses potent cardioprotective effects against cardiac injury in a rat model of heart failure, which is mediated, at least in part, by suppression of the inflammatory and cell apoptosis responses.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Pharmacology (medical),Cardiology and Cardiovascular Medicine,Pharmacology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3