Synthesis of Silica-Coated Magnetic Nanoparticles and Application in the Detection of Pathogenic Viruses

Author:

Quy Dao Van1,Hieu Nguyen Minh2,Tra Pham Thi1,Nam Nguyen Hoang2,Hai Nguyen Hoang23,Thai Son Nguyen4,Nghia Phan Tuan1,Anh Nguyen Thi Van1,Hong Tran Thi2ORCID,Luong Nguyen Hoang23

Affiliation:

1. Key Laboratory for Enzyme and Protein Technology, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam

2. VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam

3. Nano and Energy Center, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam

4. Hospital 103, 104 Phung Hung, Ha Dong, Hanoi, Vietnam

Abstract

Magnetic Fe3O4nanoparticles were prepared by coprecipitation and then coated with silica. These Fe3O4/SiO2nanoparticles consisted of a 10–15 nm magnetic core and a silica shell of 2–5 nm thickness. The superparamagnetic property of the Fe3O4/SiO2particles with the magnetization of 42.5 emu/g was confirmed by vibrating sample magnetometer (VSM). We further optimized buffers with these Fe3O4/SiO2nanoparticles to isolate genomic DNA of hepatitis virus type B (HBV) and of Epstein-Barr virus (EBV) for detection of the viruses based on polymerase chain reaction (PCR) amplification of a 434 bp fragment ofSgene specific for HBV and 250 bp fragment of nuclear antigen encoding gene specific for EBV. The purification efficiency of DNA of both HBV and EBV using obtained Fe3O4/SiO2nanoparticles was superior to that obtained with commercialized Fe3O4/SiO2microparticles, as indicated by (i) brighter PCR-amplified bands for both HBV and EBV and (ii) higher sensitivity in PCR-based detection of EBV load (copies/mL). The time required for DNA isolation using Fe3O4/SiO2nanoparticles was significantly reduced as the particles were attracted to magnets more quickly (15–20 s) than the commercialized microparticles (2-3 min).

Funder

Vietnam Ministry of Science and Technology

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3