miR-193a-5p Enhances the Radioresistance of Pancreatic Cancer Cells by Targeting ZFP57 and Activating the Wnt Pathway

Author:

Tan Lulu1,Chen Zhihua2ORCID

Affiliation:

1. Department of Radiation Oncology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China

2. Department of Digestive Medicine, Haikou People’s Hospital, Haikou, Hainan, China

Abstract

This study was to investigate whether miR-193a-5p and ZFP57 are involved in the radioresistance of pancreatic cancer and to explore its working mechanism. Pancreatic cancer tissues were harvested from patients who achieved CR (complete remission) and PR (partial remission) and those who achieved PD (progressive disease) and SD (stable disease). The mRNA and protein expressions of ZFP57 and miR-193a-5p were determined by RT-qPCR and WB (Western blot), respectively. For in vitro experiments, the parental BxPC-3 cell line was irradiated by X-ray at a total dose of 40 Gy to induce the irradiation-resistant subtype BxPC-3-RR. ZFP57 was downregulated in radioresistant pancreatic cancer cells. The results of dual-luciferase reporter gene assay, RNA pull-down assay, RT-qPCR, and WB confirmed that miR-193a-5p targeted ZFP57 and inhibited ZFP57 expression. The MTT assay and the colony formation assay showed that the radioresistant pancreatic cancer cells had higher viability and survival fraction. The results of WB indicated that in the radioresistant pancreatic cancer cells, the cyclin D1, Bax, CDk4, cleaved caspase-3, Bcl-2, and γ-H2AX proteins were upregulated to varying degrees. The results of the in vitro nude mouse experiment were consistent with those of in vivo experiments. According to the cell transfection and salvage experiments, miR-193a-5p down regulated ZFP57 after radiotherapy. As a result, the Wnt pathway was activated, which further induced radioresistance of pancreatic cancer cells. Our experiments showed that the miR-193a-5p/ZFP57/Wnt pathway mediated the radioresistance of pancreatic cancer cells, providing novel clues for the treatment of pancreatic cancer.

Publisher

Hindawi Limited

Subject

Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3