An Optimal Algorithm for Renewable Energy Generation Based on Neural Network

Author:

Zhao Weihua1,Khan Imran2ORCID,Akhtar Shelily F.3ORCID,Al-Dhaifallah Mujahed45

Affiliation:

1. State Grid Luoyang Electric Power Supply Company, Luoyang 471000, China

2. Department of Electrical Engineering, University of Engineering and Technology, Peshawar 814, Pakistan

3. Electrical Engineering Department, Asia Pacific University, Bangladesh

4. Control & Instrumentation Engineering Department, King Fahd University of Petroleum & Minerals, 31261 Dhahran, Saudi Arabia

5. Interdisciplinary Research Center (IRC) for Renewable Energy and Power Systems, King Fahd University of Petroleum & Minerals, 31261 Dhahran, Saudi Arabia

Abstract

Solar energy is a costless and readily available form of energy that has shown to be one of the cleanest and most plentiful renewable energy sources. Various large-scale solar photovoltaic (PV) facilities are being utilized to minimize pollution and carbon emissions generated by fossil energy in many nations across the world. The power sequence of PV is influenced by a variety of diverse variables, and it is very unpredictable and volatile. Unlike the distributed PVs, the centralized PVs have the same intensity and location. The obstruction of clouds causes minor variations in the output power of the PV, making the power forecasting more difficult. To solve the aforementioned difficulties, this article provides a new neural network-based technique for PV power optimization and forecasting. The first stage is to create a cloud trajectory tracking system based on cloud photos taken from the ground. Second, a cloud trajectory tracking-based irradiance coefficient prediction model was built. Then, to increase forecast accuracy, build an error correcting model. For verification, data from a centralized solar power station was used. The results show that the proposed algorithm has technological applications and may greatly improve prediction accuracy.

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3