Analyzing Lower Limb Dynamics in Human Gait Using Average Value-Based Technique

Author:

Sunny Sithara Mary1ORCID,Sivanandan K. S.2ORCID,Parameswaran Arun P.1ORCID,Thankachan Baiju3ORCID,N Shyamasunder Bhat4ORCID

Affiliation:

1. Department of Electrical and Electronics Engineering, Manipal Institute of Technology Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India

2. Department of Biomedical Engineering, Manipal Institute of Technology Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India

3. Department of Mathematics, Manipal Institute of Technology Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India

4. Department of Orthopaedics, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India

Abstract

The motivation of this study is to develop effective and economical assistive technologies for people with physical disabilities. The novelty in this manuscript is the application of the average value-based technique to accurately represent the involved biomechanics of the lower limb joints during the human gait cycle. This mathematical formulation of lower limb joints’ biomechanics forms the first objective for modeling and final exoskeleton prototype development. To account for modeling the characteristics of human locomotion, the nth-order linear differential equation with constant coefficients is considered with appropriate modification. The physical characteristics of an individual are represented by the constant coefficients (P0, P1, P2, and P3) of the modified infinite series, which are obtained by processing experimental data collected using an optical technique. The differential terms of the infinite series are replaced by difference terms (δbavg, δ2bavg, and δ3bavg) since the data were captured as a set of digital values. The work presented here is based on the experimental results of individuals suitably categorized according to their physical nature like age and other physical structure. The optically monitored positional values of the lower limb joints of the individual subjects while they are completing the gait cycles are used for getting values of different terms of the model. The data collected through the conduct of experiments are used for finding the values of the terms of the differential equation. The model is effectively validated through experimental results. It was determined that the representation’s accuracy fell within the ±5% acceptable tolerance limit. The model is prepared for healthy as well as disabled persons, through which the disability is quantified. The resulting model can be used to develop assistive devices for people with physical disabilities. This results in the rehabilitation process and thereby helps the reintegration into society, subsequently allowing them to lead a normal life.

Funder

Manipal Academy of Higher Education

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3