Opioid Nonadherence Risk Prediction of Patients with Cancer‐Related Pain Based on Five Machine Learning Algorithms

Author:

Liu JinmeiORCID,Luo Juan,Chen Xu,Xie Jiyi,Wang CongORCID,Wang Hanxiang,Yuan Qi,Li Shijun,Zhang YuORCID,Hu JianliORCID,Shi ChenORCID

Abstract

Objectives. Opioid nonadherence represents a significant barrier to cancer pain treatment efficacy. However, there is currently no effective prediction method for opioid adherence in patients with cancer pain. We aimed to develop and validate a machine learning (ML) model and evaluate its feasibility to predict opioid nonadherence in patients with cancer pain. Methods. This was a secondary analysis from a cross‐sectional study that included 1195 patients from March 1, 2018, to October 31, 2019. Five ML algorithms, such as logistic regression (LR), random forest, eXtreme Gradient Boosting, multilayer perceptron, and support vector machine, were used to predict opioid nonadherence in patients with cancer pain using 43 demographic and clinical factors as predictors. The predictive effects of the models were compared by the area under the receiver operating characteristic curve (AUC_ROC), accuracy, precision, sensitivity, specificity, and F1 scores. The value of the best model for clinical application was assessed using decision curve analysis (DCA). Results. The best model obtained in this study, the LR model, had an AUC_ROC of 0.82, accuracy of 0.82, and specificity of 0.71. The DCA showed that clinical interventions for patients at high risk of opioid nonadherence based on the LR model can benefit patients. The strongest predictors for adherence were, in order of importance, beliefs about medicines questionnaire (BMQ)‐harm, time since the start of opioid, and BMQ‐necessity. Discussion. ML algorithms can be used as an effective means of predicting adherence to opioids in patients with cancer pain, which allows for proactive clinical intervention to optimize cancer pain management. This trial is registered with ChiCTR2000033576.

Funder

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3