Development of Ecofriendly Snail Shell Particulate-Reinforced Recycled Waste Plastic Composites for Automobile Application

Author:

Oladele I. O.1ORCID,Adediran A. A.2ORCID,Akinwekomi A. D.1,Adegun M. H.13,Olumakinde O. O.1,Daramola O. O.1

Affiliation:

1. Department of Metallurgical and Materials Engineering, Federal University of Technology Akure, PMB, 704, Akure, Ondo State, Nigeria

2. Department of Mechanical Engineering, Landmark University, PMB 1001, Omu-Aran, Kwara State, Nigeria

3. Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong

Abstract

The increase in demand for thermoplastics as a light-weight material for automobile application and other commercial purposes prompts more research into the available polymer resources. In this research, the possibility of enhancing the performance of recycled waste plastics (RWP) as polymer-based composites was examined. Particulate snail shell was obtained by grounding and sieving snail shells to obtain 53–63 μm passing which was used as reinforcement in the recycled waste plastics. The composites were developed by adding varying proportions of the snail shell particulate (SSP) to RWP using a randomly dispersed process in a hot compression moulding machine maintained at 190°C for 7 min. Selected properties of SSP-reinforced RWP composites were examined. The results showed an appreciable enhancement in the properties of composites developed compared to an unreinforced RWP matrix that serves as control. The ultimate tensile strength was enhanced by about 64%, while Young’s Modulus and impact strength were enhanced by 37% and 29%, respectively. Wear and water repellant potentials were highly enhanced with the addition of 15 wt% of SSP with values of about 52% and 91%, respectively. This revealed that high content of the SSP contributes to the improvement of the strain-hardening potentials of the developed composites. The results showed that this composite material can be suitably adapted for use in the interior of automobiles as door sills or the floor panel.

Funder

Federal University of Technology

Publisher

Hindawi Limited

Subject

General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3