A Multilevel Point Cloud Classification Method for Underground Tunnels Based on Three-Dimensional Moving LiDAR Measurements

Author:

Li Yanyi12,Shi Jian2ORCID,Xiao Zhihua1

Affiliation:

1. College of Surveying and Geo-Informatics, Tongji University, Shanghai 200092, China

2. Shanghai Dianji University, Shanghai 201306, China

Abstract

Underground tunnel engineering requires complex systematic engineering. A tunnel requires internal measurements after the completion of shield construction to check the real construction quality of the tunnel and provide measurement data for the next tunnel project acceptance team. When measuring a tunnel’s internal construction and performing associated data analysis, it is necessary to accurately count the size and type information of the built tunnel internal structure. In this study, mobile three-dimensional laser scanning technology is used to collect a tunnel’s internal point cloud data, and many unordered point cloud data are collected. Thus, classifying the ground objects inside the tunnel automatically and accurately is a critical problem to be solved in a tunnel construction survey. Additionally, this study proposes a multilayer underground tunnel point cloud classification method that uses the hierarchical clustering structure to deal with the original tunnel point cloud. This method extracts the specific ground objects, such as tracks or roads, platforms, and pipelines, on the tunnel surface and inside the tunnel step by step. Concurrently, the accuracy of the projection plane and the accuracy of point cloud classification are introduced to evaluate the accuracy and finally calculate the statistics of ground object information in the tunnel. To verify the engineering practicability of this method, we first collected the point cloud data of a railway tunnel inside the tunnel using a rail car equipped with high-precision LiDAR and divided the data results into four sample areas for the classification test. To verify the algorithm’s robustness, we use the proposed method to test the highway tunnel data according to the same experimental process. Experiments show that this paper’s multilevel tunnel point cloud classification method can accurately extract these four types of ground objects. The average accuracy of the projection plane in each experimental area is not less than 91.49%, and the average accuracy of point cloud classification is not less than 92.63%. Compared with the other three types of classification methods in the same field, the method in this paper is more suitable for processing tunnel point cloud data and has the advantages of high classification accuracy, strong robustness, and a simple implementation process. The proposed method can also meet the real needs of underground tunnel internal construction surveys.

Funder

National Innovation Training Program for College Students

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Reference49 articles.

1. The study of the method of China cities underground space development and utilization;P. Dai;Applied Mechanics and Materials,2012

2. Safety risk factors of metro tunnel construction in China: an integrated study with EFA and SEM;W. Liu;Safety Science,2018

3. Risk assessment of tunnel construction based on improved cloud model;C. J. Lin;Journal of Performance of Constructed Facilities,2020

4. Inspection equipment study for subway tunnel defects by grey-scale image processing

5. Automatic subway tunnel displacement monitoring using robotic total station - ScienceDirect;J. Zhou;Measurement,2019

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3