Spatially Formulated Connected Automated Vehicle Trajectory Optimization with Infrastructure Assistance

Author:

Yi Ran1ORCID,Zhou Yang1ORCID,Wang Xin2ORCID,Liu Zhiyuan3ORCID,Li Xiaotian1ORCID,Ran Bin1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA

2. Department of Industrial and Systems Engineering, University of Wisconsin-Madison, Madison, WI, USA

3. Jiangsu Key Laboratory of Urban ITS, Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, School of Transportation, Southeast University, Nanjing, China

Abstract

This paper presents a constrained connected automated vehicles (CAVs) trajectory optimization method on curved roads with infrastructure assistance. Specifically, this paper systematically formulates trajectory optimization problems in a spatial domain and a curvilinear coordinate. As an alternative of temporal domain and Cartesian coordinate formulation, our formulation provides the constrained trajectory optimization flexibility to describe complex road geometries, traffic regulations, and road obstacles, which are usually spatially varying rather than temporal varying, with assistances vehicle to infrastructure (V2I) communication. Based on the formulation, we first conducted a mathematical proof on the controllability of our system, to show that our system can be controlled in the spatial domain and curvilinear coordinate. Further, a multiobjective model predictive control (MPC) approach is designed to optimize the trajectories in a rolling horizon fashion and satisfy the collision avoidances, traffic regulations, and vehicle kinematics constraints simultaneously. To verify the control efficiency of our method, multiscenario numerical simulations are conducted. Suggested by the results, our proposed method can provide smooth vehicular trajectories, avoid road obstacles, and simultaneously follow traffic regulations in different scenarios. Moreover, our method is robust to the spatial change of road geometries and other potential disturbances by the road curvature, work zone, and speed limit change.

Funder

Wisconsin Traffic Operation and Safety (TOPS) Laboratory

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3