A Weighted Error Distance Metrics (WEDM) for Performance Evaluation on Multiple Change-Point (MCP) Detection in Synthetic Time Series

Author:

Qi Jin Peng.1ORCID,Pu Fang.2,Zhu Ying.3,Zhang Ping.4

Affiliation:

1. College of Information Science & Technology, Donghua University, Shanghai 201620, China

2. Informationization Office, Donghua University, Shanghai 201620, China

3. HNSW Health Pathology East Genetics Level 4, Campus Centre, Prince of Wales Hospital Randwick, Randwick, NSW, Australia

4. Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia

Abstract

Change-point detection (CPD) is to find abrupt changes in time-series data. Various computational algorithms have been developed for CPD applications. To compare the different CPD models, many performance metrics have been introduced to evaluate the algorithms. Each of the previous evaluation methods measures the different aspects of the methods. Based on the existing weighted error distance (WED) method on single change-point (CP) detection, a novel WED metrics (WEDM) was proposed to evaluate the overall performance of a CPD model across not only repetitive tests on single CP detection, but also successive tests on multiple change-point (MCP) detection on synthetic time series under the random slide window (RSW) and fixed slide window (FSW) frameworks. In the proposed WEDM method, a concept of normalized error distance was introduced that allows comparisons of the distance between the estimated change-point (eCP) position and the target change point (tCP) in the synthetic time series. In the successive MCPs detection, the proposed WEDM method first divides the original time-series sample into a series of data segments in terms of the assigned tCPs set and then calculates a normalized error distance (NED) value for each segment. Next, our WEDM presents the frequency and WED distribution of the resultant eCPs from all data segments in the normalized positive-error distance (NPED) and the normalized negative-error distance (NNED) intervals in the same coordinates. Last, the mean WED (MWED) and MWTD (1-MWED) were obtained and then dealt with as important performance evaluation indexes. Based on the synthetic datasets in the Matlab platform, repetitive tests on single CP detection were executed by using different CPD models, including ternary search tree (TST), binary search tree (BST), Kolmogorov–Smirnov (KS) tests, t-tests (T), and singular spectrum analysis (SSA) algorithms. Meanwhile, successive tests on MCPs detection were implemented under the fixed slide window (FSW) and random slide window (RSW) frameworks. These CPD models mentioned above were evaluated in terms of our WED metrics, together with supplementary indexes for evaluating the convergence of different CPD models, including rates of hit, miss, error, and computing time, respectively. The experimental results showed the value of this WEDM method.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3