Accumulative Plastic Deformation of the Improved Completely Weathered Granite Subgrade in High-Speed Railway

Author:

Qu Changzi1ORCID,Zhao Jing1ORCID,Wang Zheng2ORCID,Liu Ze3,Hou Ganghui1,Zhou Xiangxiang1

Affiliation:

1. College of Civil Engineering and Mechanics, Xiangtan University, Xiangtan 411105, China

2. School of Civil Engineering, Central South University, Changsha 410075, China

3. College of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, China

Abstract

The improvement and reuse of completely weathered granite (CWG) with poor engineering properties for backfilling embankments can help protect the environment and bring great economic benefits. The embankment of high-speed railways demands an extremely low additional subgrade settlement under long-term dynamic loads. To analyze the applicability of the improved CWG used for subgrade filling, a series of laboratory dynamic triaxial and field cyclic loading tests were carried out. On the basis of the test results, a calculation model of accumulative plastic strain considering the dynamic stress ratio and the cement content was established. Using the proposed model and the numerically calculated dynamic stress, the accumulative plastic deformation of an embankment filled with improved CWG under various driving conditions was calculated and discussed. The variation of accumulative plastic deformation of the improved CWG with loading cycles could be described by a power function. The dynamic stress level had a significant influence on the accumulative plastic strain, and the strain in the bottom layer of the subgrade bed was greatly attenuated. Accordingly, most of the accumulative plastic deformation attenuation occurred within the depth range of the subgrade bed. The final total accumulative plastic deformations of the embankment were less than 2 mm (5 mm for the limit value) after 4 million times of high-speed train loadings, proving that the improved CWG can be used for subgrade filling. The influence of the axle load on accumulative plastic deformation was more significant than that of the train speed. The proposed calculation model of the accumulative plastic strain could provide valuable reference for similar railway engineering.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3