Parsing of Research Documents into XML Using Formal Grammars

Author:

Iwashokun OpeoluwaORCID,Ade-Ibijola AbejideORCID

Abstract

Automatic information extraction of content and style format in paged documents is challenging. It requires the conversion of the original document into a granular level of details for which every document section and content is identifiable. This functionality or tool does not exist for any academic research document yet. In this paper, we present an automated process of parsing research paper documents into XML files using a formal method approach of context‐free grammars (CFGs) and regular expressions (REGEXs) definable of a standard template. We created a tool for the algorithms to parse these documents into tree‐like structures organized as XML files named research_XML (RX) parser. The RX tool performed the extraction of syntactic structure and semantic information of the document’s contents into XML files. These XML output files are lightweight, analyzable, query‐able, and web interoperable. The RX tool has a success rate of 91% when evaluated on fifty varying research documents of 160 average pages and 8,004 total pages. The tool and test data are accessible on GitHub repo. The novelty of our process is specific to applying formal techniques for information extraction in structured multipaged documents and academic research documents thus advancing the research in automatic information extraction.

Funder

National Research Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3