Set-Based Differential Evolution Algorithm Based on Guided Local Exploration for Automated Process Discovery

Author:

Jing Si-Yuan12ORCID

Affiliation:

1. School of Computer Science, Leshan Normal University, Leshan 614000, China

2. Key Lab of Internet Natural Language Processing of Sichuan Provincial Education Department, Leshan Normal University, Leshan 614000, China

Abstract

Evolutionary algorithm is an effective way to solve process discovery problem which aims to mine process models from event logs which are consistent with the real business processes. However, current evolutionary algorithms, such as GeneticMiner, ETM, and ProDiGen, converge slowly and in difficultly because all of them employ genetic crossover and mutation which have strong randomness. This paper proposes a hybrid evolutionary algorithm for automated process discovery, which consists of a set-based differential evolution algorithm and guided local exploration. There are three major innovations in this work. First of all, a hybrid evolutionary strategy is proposed, in which a differential evolution algorithm is employed to search the solution space and rapidly approximate the optimal solution firstly, and then a specific local exploration method joins to help the algorithm skip out the local optimum. Secondly, two novel set-based differential evolution operators are proposed, which can efficiently perform differential mutation and crossover on the causal matrix. Thirdly, a fine-grained evaluation technique is designed to assign score to each node in a process model, which is employed to guide the local exploration and improve the efficiency of the algorithm. Experiments were performed on 68 different event logs, including 22 artificial event logs, 44 noisy event logs, and two real event logs. Moreover, the proposed algorithm was compared with three popular algorithms of process discovery. Experimental results show that the proposed algorithm can achieve good performance and its converge speed is fast.

Funder

Project of Science and Technology Bureau of Leshan

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3