Affiliation:
1. Dept. Ingeniería Sistemas Informáticos y Telemáticos, Universidad de Extremadura, Cáceres, Extremadura, Spain
2. Dept. Matemáticas para la Economía y la Empresa, Universidad de Valencia, Valencia, Spain
Abstract
Different types of sensors along the distribution pipelines are continuously measuring different parameters in Smart WAter Networks (SWAN). The huge amount of data generated contain measurements such as flow or pressure. Applying suitable algorithms to these data can warn about the possibility of leakage within the distribution network as soon as the data are gathered. Currently, the algorithms that deal with this problem are the result of numerous short-term water demand forecasting (WDF) approaches. However, in general, these WDF approaches share two shortcomings. The first one is that they provide low-frequency predictions. That is, most of them only provide predictions with 1-hour time steps, and only a few provide predictions with 15 min time steps. The second one is that most of them require estimating the annual seasonality or taking into account not only data about water demand but also about other factors, such as weather data, that make their use more complicated. To overcome these weaknesses, this work presents an approach to forecast the water demand based on pattern recognition and pattern-similarity techniques. The approach has a twofold contribution. Firstly, the predictions are provided with 1 min time steps within a time lead of 24 hours. Secondly, the laborious estimation of annual seasonality or the addition of other factors, such as weather data, is not needed. The paper also presents the promising results obtained after applying the approach for water demand forecasting to a real project for the detection and location of water leakages.
Funder
Agencia Estatal de Investigación
Subject
Computer Science Applications,Software
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献