Identification of Oxidative Stress-Related Biomarkers in Diabetic Kidney Disease

Author:

Ma Xiaoju12ORCID,Zhang Xiaobo1ORCID,Leng Tian2,Ma Jingru2,Yuan Zhongzhu2,Gu Yalin2,Hu Tingting2,Liu Qiuyan2,Shen Tao1ORCID

Affiliation:

1. School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China

2. School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China

Abstract

Background. Diabetic kidney disease (DKD) is a leading cause of end-stage renal disease throughout the world. In kidney disease, oxidative stress has been linked to both antioxidant depletions and increased reactive oxygen species (ROS) production. Thus, the objective of this study was to identify biomarkers related to oxidative stress in DKD. Methods. The gene expression profile of the DKD was extracted from the Gene Expression Omnibus (GEO) database. The identification of the differentially expressed genes (DEGs) was performed using the “limma” R package, and weighted gene coexpression network analysis (WGCNA) was used to find the gene modules that were most related to DKD. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was performed using “Org.Hs.eg.db” R package. The protein-protein interaction (PPI) network was constructed using the STRING database. The hub genes were identified by the Molecular Complex Detection (MCODE) plug-in of Cytoscape software. The diagnostic capacity of hub genes was verified using the receiver operating characteristic (ROC) curve. Correlations between diagnostic genes were analyzed using the “corrplot” package. In addition, the miRNA gene transcription factor (TF) network was used to explain the regulatory mechanism of hub genes in DKD. Results. DEGs analysis and WGCNA-identified 160 key genes were identified in DKD patients. Among them, nine oxidative stress-related genes were identified as candidate hub genes for DKD. Using the PPI network, five hub genes, NR4A2, DUSP1, FOS, JUN, and PTGS2, were subsequently identified. All the hub genes were downregulated in DKD and had a high diagnostic value of DKD. The regulatory mechanism of hub genes was analyzed from the miRNA gene-TF network. Conclusion. Our study identified NR4A2, DUSP1, FOS, JUN, and PTGS2 as hub genes of DKD. These genes may serve as potential therapeutic targets for DKD patients.

Funder

Department of Science and Technology of Sichuan Province

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3