Affiliation:
1. Computer Science and Technology, Central University of Jharkhand, Ranchi, India
2. Department of Computer Science, Govt. Degree College Basohli, Basohli, India
Abstract
With the emergence of social media platforms, most people have changed their way of interacting. Perhaps, sharing day-to-day lifestyle updates is a trend substantially influenced by microblogging sites, specifically Twitter, Facebook, Instagram, and many more. Moreover, text and messages are the most preferred way for such interactions. Twitter is one of the most commonly used microblogging tools that enable people to express their thoughts, opinions, emotions, happiness, sadness, excitement, ideas, mental stress, and so on. Hence, the sentiment prediction furnished by such textual data becomes a complex and challenging task. In this research, the authors proposed a hybridization of the convolutional neural network and bi-directional long short-term memory model (named ConvBidirectional-LSTM), which aims to better the categorization of sentiments of text data. Then, this proposed hybrid ConvBidirectional-LSTM model is compared with the existing state-of-the-art models, GloVe-based CNN-LSTM and Hierarchical Bi-LSTM (HeBiLSTM) models. Furthermore, the performance of the proposed hybrid ConvBidirectional-LSTM model is evaluated on the US airline dataset using various performance parameters like accuracy, precision, recall, and
score. The proposed model outperformed the existing state-of-the-art models with an accuracy rate of 93.25% in sentiment prediction.
Subject
Computer Networks and Communications,Computer Science Applications
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献