Sentiment Prediction of Textual Data Using Hybrid ConvBidirectional-LSTM Model

Author:

Mahto Dashrath1ORCID,Yadav Subhash Chandra1ORCID,Lalotra Gotam Singh2ORCID

Affiliation:

1. Computer Science and Technology, Central University of Jharkhand, Ranchi, India

2. Department of Computer Science, Govt. Degree College Basohli, Basohli, India

Abstract

With the emergence of social media platforms, most people have changed their way of interacting. Perhaps, sharing day-to-day lifestyle updates is a trend substantially influenced by microblogging sites, specifically Twitter, Facebook, Instagram, and many more. Moreover, text and messages are the most preferred way for such interactions. Twitter is one of the most commonly used microblogging tools that enable people to express their thoughts, opinions, emotions, happiness, sadness, excitement, ideas, mental stress, and so on. Hence, the sentiment prediction furnished by such textual data becomes a complex and challenging task. In this research, the authors proposed a hybridization of the convolutional neural network and bi-directional long short-term memory model (named ConvBidirectional-LSTM), which aims to better the categorization of sentiments of text data. Then, this proposed hybrid ConvBidirectional-LSTM model is compared with the existing state-of-the-art models, GloVe-based CNN-LSTM and Hierarchical Bi-LSTM (HeBiLSTM) models. Furthermore, the performance of the proposed hybrid ConvBidirectional-LSTM model is evaluated on the US airline dataset using various performance parameters like accuracy, precision, recall, and f 1 score. The proposed model outperformed the existing state-of-the-art models with an accuracy rate of 93.25% in sentiment prediction.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3