Parallelized Seeded Region Growing Using CUDA

Author:

Park Seongjin1,Lee Jeongjin2ORCID,Lee Hyunna3,Shin Juneseuk4ORCID,Seo Jinwook5,Lee Kyoung Ho6,Shin Yeong-Gil5,Kim Bohyoung7

Affiliation:

1. SW Content Research Laboratory, Electronics and Telecommunications Research Institute, 218 Gajeong-Ro, Yuseong-Gu, Daejeon 305-700, Republic of Korea

2. School of Computer Science & Engineering, Soongsil University, 369 Sangdo-Ro, Dongjak-Gu, Seoul 156-743, Republic of Korea

3. Department of Brain and Cognitive Sciences, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul 151-742, Republic of Korea

4. Department of Systems Management Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 440-746, Republic of Korea

5. School of Computer Science and Engineering, Seoul National University, 599 Kwanak-ro, Kwanak-gu, Seoul 151-742, Republic of Korea

6. Department of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea

7. Department of Radiology, Seoul National University Bundang Hospital, 82 Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea

Abstract

This paper presents a novel method for parallelizing the seeded region growing (SRG) algorithm using Compute Unified Device Architecture (CUDA) technology, with intention to overcome the theoretical weakness of SRG algorithm of its computation time being directly proportional to the size of a segmented region. The segmentation performance of the proposed CUDA-based SRG is compared with SRG implementations on single-core CPUs, quad-core CPUs, and shader language programming, using synthetic datasets and 20 body CT scans. Based on the experimental results, the CUDA-based SRG outperforms the other three implementations, advocating that it can substantially assist the segmentation during massive CT screening tests.

Funder

National Research Foundation of Korea

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fast parallel vessel segmentation;Computer Methods and Programs in Biomedicine;2020-08

2. A Parallel Method for Anatomical Structure Segmentation based on 3D Seeded Region Growing;2020 International Joint Conference on Neural Networks (IJCNN);2020-07

3. A novel method for surface exploration: Super-resolution restoration of Mars repeat-pass orbital imagery;Planetary and Space Science;2016-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3