Early Stages ofwe/we wal/walMouse Hair Morphogenesis: Light and Fluorescent Microscopy of the Whole-Mount Epidermis

Author:

Rippa Alexandra1ORCID,Leonova Olga2,Popenko Vladimir2,Vasiliev Andrey3,Terskikh Vasily3ORCID,Vorotelyak Ekaterina34ORCID

Affiliation:

1. Department of Biomedical Technologies, Pirogov Russian National Research Medical University, 1 Ostrovityanova, Moscow 117997, Russia

2. Laboratory of Cell Basics for Cancer Research, Engelhardt Institute of Molecular Biology, 32 Vavilov Street, Moscow 119991, Russia

3. Laboratory of Cell Proliferation, N.K. Koltsov Institute of Developmental Biology, 26 Vavilov Street, Moscow 119334, Russia

4. Department of Cell Biology and Histology, Lomonosov Moscow State University, 1 Leninskiye Gory, Moscow 119234, Russia

Abstract

In adult skin, hair follicles cyclically self-renew in a manner that recapitulates embryonic hair follicle morphogenesis. The most common pathology of hair in adults is alopecia, which is hair loss to different extent. There are a number of murine models of alopecia including spontaneous mutations. In the present study, we worked with double homozygouswe/we wal/walmice which demonstrate symptoms closely resembling human alopecia. Using whole-mount preparations of epidermis of E18.5 embryos we show that hair follicle defects can be revealed as early as during embryonic morphogenesis in these mutants. The number of hair follicles was reduced almost 1.5-fold in mutant skin. The shape of the early stage small follicles was altered in mutant animals as compared to control ones. Additionally, follicles of mutant embryos were wider at the point of conjunction with interfollicular epidermis. We believe that the mutant mice studied represent a fascinating model to address the problem of hair loss. We demonstrated alterations in the morphogenesis of embryonic hair follicle inwe/we wal/waldouble homozygous mice developing alopecia postnatally. We suppose that incorrect morphogenesis of hair follicles during embryogenesis is closely related to alopecia in the adult life. Unveiling the mechanisms involved in altered embryogenesis may elucidate the pathogenesis of alopecia.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3