High-rate wireless data communications: An underwater acoustic communications framework at the physical layer

Author:

Bessios Anthony G.1,Caimi Frank M.1

Affiliation:

1. Department of Electrical Engineering, Harbor Branch Oceanographic Institution, Inc., 5600 U.S. 1 North, Fort Pierce, FL 34946, USA

Abstract

A variety of signal processing functions are performed by Underwater Acoustic Systems. These include: 1) detection to determine presence or absence of information signals in the presence of noise, or an attempt to describe which of a predetermined finite set of possible messages{mi,i,...,M}the signal represents; 2) estimation of some parameterθˆassociated with the received signal (i.e. range, depth, bearing angle, etc.); 3) classification and source identification; 4) dynamics tracking; 5) navigation (collision avoidance and terminal guidance); 6) countermeasures; and 7) communications. The focus of this paper is acoustic communications.There is a global current need to develop reliable wireless digital communications for the underwater environment, with sufficient performance and efficiency to substitute for costly wired systems. One possible goal is a wireless system implementation that insures underwater terminal mobility. There is also a vital need to improve the performance of the existing systems in terms of data-rate, noise immunity, operational range, and power consumption, since, in practice, portable high-speed, long range, compact, low-power systems are desired.We concede the difficulties associated with acoustic systems and concentrate on the development of robust data transmission methods anticipating the eventual need for real time or near real time video transmission. An overview of the various detection techniques and the general statistical digital communication problem is given based on a statistical decision theory framework. The theoretical formulation of the underwater acoustic data communications problem includes modeling of the stochastic channel to incorporate a variety of impairments and environmental uncertainties, and proposal of new compensation strategies for an efficient and robust receiver design.

Funder

Harbor Branch Institute Postdoctoral Program

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Near-Critical Fluids for Small-Scale Sound Wave Channelling;37th AIAA Thermophysics Conference;2004-06-20

2. Sound wave channelling in near-critical sulfur hexafluoride (SF6);The Journal of the Acoustical Society of America;2004-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3