Optimum feedback strategy for access control mechanism modelled as stochastic differential equation in computer network

Author:

Ahmed N. U.1,Li Cheng1

Affiliation:

1. School of Information Technology and Engineering, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada

Abstract

We consider optimum feedback control strategy for computer communication network, in particular, the access control mechanism. The dynamic model representing the source and the access control system is described by a system of stochastic differential equations developed in our previous works. Simulated annealing (SA) was used to optimize the parameters of the control law based on neural network. This technique was found to be computationally intensive. In this paper, we have proposed to use a more powerful algorithm known as recursive random search (RRS). By using this technique, we have been able to reduce the computation time by a factor of five without compromising the optimality. This is very important for optimization of high-dimensional systems serving a large number of aggregate users. The results show that the proposed control law can improve the network performance by improving throughput, reducing multiplexor and TB losses, and relaxing, not avoiding, congestion.

Funder

National Science and Engineering Research Council of Canada

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal Control of Nonlinear Hybrid Systems Driven by Signed Measures with Variable Intensities and Supports;SIAM Journal on Control and Optimization;2021-01

2. Applications to Physical Examples;Optimal Control of Dynamic Systems Driven by Vector Measures;2021

3. Measure-Driven Nonlinear Dynamic Systems with Applications to Optimal Impulsive Controls;Journal of Optimization Theory and Applications;2020-10-28

4. Periodic Solutions of Semilinear Impulsive Periodic System with Time-Varying Generating Operators on Banach Space;Mathematical Problems in Engineering;2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3