Optimizing Cutting Conditions and Prediction of Surface Roughness in Face Milling of AZ61 Using Regression Analysis and Artificial Neural Network

Author:

Alharthi Nabeel H.1,Bingol Sedat2,Abbas Adel T.1ORCID,Ragab Adham E.3,El-Danaf Ehab A.1ORCID,Alharbi Hamad F.1

Affiliation:

1. Department of Mechanical Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia

2. Department of Mechanical Engineering, Dicle University, 21280 Diyarbakir, Turkey

3. Department of Industrial Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia

Abstract

In this paper artificial neural network (ANN) and regression analysis were used for the prediction of surface roughness. Five models of neural network were developed and the model that showed best fit with experimental results was with 6 neurons in the hidden layer. Regression analysis was also used to build a mathematical model representing the surface roughness as a function of the process parameters. The coefficient of determination was found to be 94.93% and 93.63%, for the best neural network model and regression analysis, respectively, from the comparison of the models with thirteen validation experimental tests. Optical microscopy was conducted on two machined surfaces with two different values of feed rates while maintaining the spindle speed and depth of cut at the same values. Examining the surface topology and surface roughness profile for the two surfaces revealed that higher feed rate results in relatively thick roughness markings that are distantly spaced, whereas low values of feed rate result in thin surface roughness markings that are closely spaced giving better surface finish.

Funder

King Saud University

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3