K Important Neighbors: A Novel Approach to Binary Classification in High Dimensional Data

Author:

Raeisi Shahraki Hadi1ORCID,Pourahmad Saeedeh12,Zare Najaf13ORCID

Affiliation:

1. Department of Biostatistics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

2. Bioinformatics and Computational Biology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

3. Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

Abstract

K nearest neighbors (KNN) are known as one of the simplest nonparametric classifiers but in high dimensional setting accuracy of KNN are affected by nuisance features. In this study, we proposed the K important neighbors (KIN) as a novel approach for binary classification in high dimensional problems. To avoid the curse of dimensionality, we implemented smoothly clipped absolute deviation (SCAD) logistic regression at the initial stage and considered the importance of each feature in construction of dissimilarity measure with imposing features contribution as a function of SCAD coefficients on Euclidean distance. The nature of this hybrid dissimilarity measure, which combines information of both features and distances, enjoys all good properties of SCAD penalized regression and KNN simultaneously. In comparison to KNN, simulation studies showed that KIN has a good performance in terms of both accuracy and dimension reduction. The proposed approach was found to be capable of eliminating nearly all of the noninformative features because of utilizing oracle property of SCAD penalized regression in the construction of dissimilarity measure. In very sparse settings, KIN also outperforms support vector machine (SVM) and random forest (RF) as the best classifiers.

Funder

Shiraz University of Medical Sciences

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3