Thermomechanical Fatigue Behavior of Spray-Deposited SiCp/Al-Si Composite Applied in the High-Speed Railway Brake Disc

Author:

Li Wei12ORCID,Chen Huitao12ORCID,Zuo Lu12ORCID,Chen Jian12ORCID,Xu Dongliang12ORCID,He Jianjun12ORCID,Li Cong12ORCID,Peng Zhuoyin12,Ren Yanjie12ORCID,Zhang Sheng-de3

Affiliation:

1. Key Laboratory of Efficient & Clean Energy Utilization, School of Energy and Power Engineering, Changsha University of Science & Technology, Changsha 410114, China

2. Hunan Province 2011 Collaborative Innovation Center of Clean Energy, and Smart Grid, Changsha 410114, China

3. Japan Electric Power Central Research Institute, Tokyo 240-0196, Japan

Abstract

The thermomechanical fatigue (TMF) behaviors of spray-deposited SiCp-reinforced Al-Si alloy were investigated in terms of the size of Si particles and the Si content. Thermomechanical fatigue experiments were conducted in the temperature range of 150-400°C. The cyclic response behavior indicated that the continuous cyclic softening was exhibited for all materials, and the increase in SiC particles size and Si content aggravated the softening degree, which was attributed to dislocation generation due to differential thermal contraction at the Al matrix/Si phase interface or Al matrix/SiC particle interface. Meanwhile, the TMF life and stress amplitude of SiCp/Al-7Si composites were greater than those of Al-7Si alloy, and increased with the increasing SiC particle size, which was associated with “load sharing” of the direct strengthening mechanism. The stress amplitude of 4.5μmSiCp/Al-Si composite increased as the Si content increased; however, the influence of Si content on the TMF life was not so significant. The TMF failure mechanism revealed that the crack mainly initiated at the agglomeration of small-particulate SiC and the breakage of large-particulate SiC, and the broken primary Si and the exfoliated eutectic Si accelerated the crack propagation.

Funder

Changsha University of Science and Technology

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3