Affiliation:
1. School of Materials Science and Engineering, Shandong University of Technology, Zibo 255049, China
2. College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, China
Abstract
The influence of nanocomposite hole-extraction layers on the performance of organic photovoltaic (OPV) cells based on blends of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C-61-buytyric acid methyl ester (PCBM) has been investigated. The hole-extraction layers consist of poly(3,4,-ethylene dioxythiophene) polystyrene sulfonic acid (PEDOT:PSS) doped with different concentrations of multiwall carbon nanotubes (MWCNTs). Compared with a pristine device (i.e., without MWCNTs), the MWCNTs-doped OPV cells shows an improved short-circuit current density, fill factor, and power conversion efficiency from 8.82 to 9.03 mA/cm2, 0.43 to 0.474, and 2.12% to 2.39% (i.e., by about 13%), respectively. Reasons for the improved performance of the devices are discussed. It shows that the reduction of series resistance of the devices might be correlated with the improvement of the OPV cells, performance achieved through the incorporation of MWCNTs into the hole-extraction layer of PEDOT:PSS.
Funder
Program for New Century Excellent Talents in University
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献