Development of Hypereutectic AlSi Alloy Powder Injection Molding Feedstocks by Rheological Analysis

Author:

Ni Jiaqi1ORCID,Han Keqing1,Yu Muhuo1

Affiliation:

1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China

Abstract

The comprehensive properties of a feedstock have a critical influence on the powder injection molding process. Proper feedstock with homogeneous structure, favorable flow characteristic, and moldability is the prerequisite for obtaining a final part with excellent comprehensive properties. The objective of the present work was to develop an optimal feedstock for fabrication of hypereutectic AlSi (20 wt.%) alloy parts by the powder injection molding technique. For this purpose, micron-sized hypereutectic AlSi (20 wt.%) alloy powder was mixed with different amounts of a binder which consisted of 35 wt.% high-density polyethylene, 62 wt.% carnauba wax, and 3 wt.% stearic acid. The binder contents of the feedstocks were in the range from 13 wt.% to 21 wt.%. The influences of binder content, shear rate, and temperature on the rheological behaviors of feedstocks have been investigated via a capillary rheometer. The feedstock with 21 wt.% binder exhibited a variable flow behavior and was culled. The rest of the feedstocks showed a pseudoplastic behavior. Comprehensive analysis of rheological parameters such as the flow behavior index, yield stress, flow activation energy, and the general moldability index, the feedstock with 17 wt.% binder exhibited the best rheological performance and favorable moldability. The molded part with 17 wt.% binder had constant density, good shape retention, and stiffness as well as homogeneous distribution of the powder and binder. After solvent debinding, the debound item showed a homogeneous porous structure which is suitable for the subsequent thermal debinding and sintering processes.

Funder

Donghua University

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3