Performance Analysis of Interaction between Smart Glasses and Smart Objects Using Image-Based Object Identification

Author:

Rumiński Jacek1ORCID,Bujnowski Adam1,Kocejko Tomasz1,Wtorek Jerzy1,Andrushevich Alexey2,Biallas Martin2ORCID,Kistler Rolf2

Affiliation:

1. Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland

2. Hochschule Luzern, iHomeLab, Technikumstrasse 21, 6048 Horw, Switzerland

Abstract

We propose the use of smart glasses to collaborate with smart objects in the Internet of Things environment. Particularly we are focusing on new interaction methods and the analysis of acceptable reaction times in the process of object recognition using smart glasses. We evaluated the proposed method using user studies and experiments with three different smart glasses: Google Glass, Epson Moverio, and the developed eGlasses platform. We conclude that using the proposed method it is possible to recognize objects and process information allowing object detection below the average acceptance response times specified by almost all participants in the user study. Additionally, we showed that eye-tracking can be used for simple interaction between a user and a graphical user interface presented in the near-to-eye display.

Funder

Gdansk University of Technology

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bubbleu: Exploring Augmented Reality Game Design with Uncertain AI-based Interaction;Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems;2023-04-19

2. An IoT and Wearables-Based Smart Home for ALS Patients;IEEE Internet of Things Journal;2022-11-01

3. An energy-efficient low-memory image compression system for multimedia IoT products;EURASIP Journal on Image and Video Processing;2018-09-17

4. SSVEP-Based BCI in a Smart Home Scenario;Advances in Computational Intelligence;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3