Intensity-Based Nonoverlapping Area Registration Supporting “Drop-Outs” in Terms of Model-Based Radiostereometric Analysis

Author:

Klima Ondrej1ORCID,Novobilsky Petr2ORCID,Madeja Roman3,Barina David1ORCID,Chromy Adam4ORCID,Spanel Michal1ORCID,Zemcik Pavel1ORCID

Affiliation:

1. IT4Innovations Centre of Excellence, Brno University of Technology, Bozetechova 1/2, 612 66 Brno, Czech Republic

2. Radiology Institute, University Hospital in Ostrava, 17 Listopadu 1790, 708 52 Ostrava, Czech Republic

3. Trauma Center, University Hospital in Ostrava, 17 Listopadu 1790, 708 52 Ostrava, Czech Republic

4. Department of Control and Instrumentation, Brno University of Technology, Technicka 3082/12, 616 00 Brno, Czech Republic

Abstract

A model-based radiostereometric analysis (MBRSA) is a method for precise measurement of prosthesis migration, which does not require marking the implant with tantalum beads. Instead, the prosthesis pose is typically recovered using a feature-based 2D-3D registration of its virtual model into a stereo pair of radiographs. In this study, we evaluate a novel intensity-based formulation of previously published nonoverlapping area (NOA) approach. The registration is capable of performing with both binary radiographic segmentations and nonsegmented X-ray images. In contrast with the feature-based version, it is capable of dealing with unreliable parts of prosthesis. As the straightforward formulation allows efficient acceleration using modern graphics adapters, it is possible to involve precise high-poly virtual models. Moreover, in case of binary segmentations, the nonoverlapping area is simply interpretable and useful for indicating the accuracy of the registration outcome. In silico and phantom evaluations were performed using a cementless Zweymüller femoral stem and its reverse engineered (RE) model. For initial pose estimates with difference from the ground-truth limited to ±4 mm and ±4°, respectively, the mean absolute translational error was not higher than 0.042 ± 0.035 mm. The error in rotation around the proximodistal axis was 0.181 ± 0.265°, and the error for the remaining axes was not higher than 0.035 ± 0.037°.

Funder

Brno University of Technology

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3