Identification of Encrypted Traffic Using Advanced Mathematical Modeling and Computational Intelligence

Author:

Liu Xinlei1ORCID

Affiliation:

1. School of Network and Information Security, Xidian University, Xi’an 710126, China

Abstract

This paper proposed a hybrid approach for the identification of encrypted traffic based on advanced mathematical modeling and computational intelligence. Network traffic identification is the premise and foundation of improving network management, service quality, and application security. It is also the focus of network behavior analysis, network planning and construction, network anomaly detection, and network traffic model research. With the increase in user and service requirements, many applications use encryption algorithms to encrypt traffic during data transmission. As a result, traditional traffic classification methods classify encrypted traffic on the network, which brings great difficulties and challenges to network monitoring and data mining. In our article, a nonlinear modified DBN method is proposed and applied to encrypted traffic identification. Firstly, based on Deep Belief Networks (DBN), this paper introduces the proposed Eodified Elliott (ME)-DBN model, analyzes the function image, and presents the ME-DBN learning algorithm. Secondly, this article designs an encrypted traffic recognition model based on the ME-DBN model. Feature extraction is carried out by training the ME-DBN model, and finally, classification and recognition are carried out by the classifier. The experimental results on the ISCX VPN-non-VPN database show that the MEDBN method proposed in this article can enhance the classification and recognition rate and has better robustness to encrypt traffic recognition from different software.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3