Bioinformatics Analysis of Competing Endogenous RNA Network and Immune Infiltration in Atrial Fibrillation

Author:

Liu Xing1ORCID,Peng Ke2,Zhong Guoqiang3ORCID,Wu Mingxing1,Wang Lei1ORCID

Affiliation:

1. Department of Cardiology, Xiangtan Central Hospital, Xiangtan, Hunan 411100, China

2. Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China

3. Department of Cardiology, Guangxi Cardiovascular Institute, The First Affiliated Hospital of Guangxi Medical University, Guangxi 530000, China

Abstract

Background. There is still no clear understanding of the pathogenesis of atrial fibrillation (AF). For this purpose, we used integrated analysis to uncover immune infiltration characteristics and investigated their relationship with competing endogenous RNA (ceRNA) network in AF. Methods. Three AF mRNA data sets (GSE14975, GSE79768, and GSE41177) were integrated using the SVA method from Gene Expression Omnibus (GEO). Together with AF circRNA data set (GSE129409) and miRNA data set (GSE70887) from GEO database, we built a ceRNA network. Then hub genes were screened by the Cytoscape plug-in cytoHubba from a protein-protein interaction (PPI) network. As well, CIBERSORT was employed to investigate immune infiltration, followed by Pearson correlation coefficients to unravel the correlation between AF-related infiltrating immune cells and hub genes. Ulteriorly, circRNA-miRNA-mRNA regulatory axises that could be immunologically related to AF were obtained. Results. Ten hub genes were identified from the constructing PPI network. The immune infiltration analysis revealed that the number of monocytes and neutrophils was higher, as well as the number of dendritic cells activated and T cells regulatory (Tregs) was lower in AF. Seven hub genes (C5AR1, CXCR4, HCK, LAPTM5, MPEG1, TLR8, and TNFSF13B) were associated with those 4 immune cells ( P < 0.05 ). We found that the circ_0005299–miR-1246–C5AR1 and circRNA_0079284-miR-623-HCK/CXCR4 regulatory axises may be associated with the immune mechanism of AF. Conclusion. The findings of our study provide insights into immuno-related ceRNA networks as potential molecular regulators of AF progression.

Publisher

Hindawi Limited

Subject

Genetics,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3