Using Hierarchical Latent Dirichlet Allocation to Construct Feature Tree for Program Comprehension

Author:

Sun Xiaobing1ORCID,Liu Xiangyue2,Duan Yucong3ORCID,Li Bin1ORCID

Affiliation:

1. School of Information Engineering, Yangzhou University, Yangzhou, China

2. Tongda College of Nanjing University of Posts and Telecommunications, Nanjing, China

3. Hainan University, Haikou, China

Abstract

Program comprehension is an important task faced by developers during software maintenance. With the increasing complexity of evolving systems, program comprehension becomes more and more difficult. In practice, programmers are accustomed to getting a general view of the features in a software system and then finding the interesting or necessary files to start the understanding process. Given a system, developers may need a general view of the system. The traditional view of a system is shown in a package-class structure which is difficult to understand, especially for large systems. In this article, we focus on understanding the system in both feature view and file structure view. This article proposes an approach to generate a feature tree based on hierarchical Latent Dirichlet Allocation (hLDA), which includes two hierarchies, the feature hierarchy and file structure hierarchy. The feature hierarchy shows the features from abstract level to detailed level, while the file structure hierarchy shows the classes from whole to part. Empirical results show that the feature tree can produce a view for the features and files, and the clustering of classes in the package in our approach is better (in terms of recall) than the other clustering approach, that is, hierarchical clustering.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3