Preliminary Data on the Interaction between Some Biometals and Oxidative Stress Status in Mild Cognitive Impairment and Alzheimer’s Disease Patients

Author:

Balmuș Ioana-Miruna1,Strungaru Stefan-Adrian2,Ciobica Alin2ORCID,Nicoara Mircea-Nicusor1,Dobrin Romeo3,Plavan Gabriel1,Ștefănescu Cristinel3

Affiliation:

1. Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iasi, Romania

2. Department of Research, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iasi, Romania

3. Department of Psychiatry, Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 16th University Avenue, 700115 Iasi, Romania

Abstract

Increased interest regarding the biometal mechanisms of action and the pathways in which they have regulatory roles was lately observed. Particularly, it was shown that biometal homeostasis dysregulation may lead to neurodegeneration including Alzheimer’s disease, Parkinson disease, or prion protein disease, since important molecular signaling mechanisms in brain functions implicate both oxidative stress and redox active biometals. Oxidative stress could be a result of a breakdown in metal-ion homeostasis which leads to abnormal metal protein chelation. In our previous work, we reported a strong correlation between Alzheimer’s disease and oxidative stress. Consequently, the aim of the present work was to evaluate some of the biometals’ levels (magnesium, manganese, and iron), the specific activity of some antioxidant enzymes (superoxide dismutase and glutathione peroxidase), and a common lipid peroxidation marker (malondialdehyde concentration), in mild cognitive impairment (n=15) and Alzheimer’s disease (n=15) patients, compared to age-matched healthy subjects (n=15). We found increased lipid peroxidation effects, low antioxidant defense, low magnesium and iron concentrations, and high manganese levels in mild cognitive impairment and Alzheimer’s disease patients, in a gradual manner. These data could be relevant for future association studies regarding the prediction of Alzheimer’s disease development risk or circling through stages by analyzing both active redox metals, oxidative stress markers, and the correlations in between.

Funder

Autoritatea Natională pentru Cercetare Stiintifică

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3