High-Fidelity Aerothermal Engineering Analysis for Planetary Probes Using DOTNET Framework and OLAP Cubes Database

Author:

Subrahmanyam Prabhakar1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Center of Excellence for Space Transportation & Exploration, San Jose State University, One Washington Square, San Jose, CA 95192, USA

Abstract

This publication presents the architecture integration and implementation of various modules inSpartaframework.Spartais a trajectory engine that is hooked to an Online Analytical Processing (OLAP) database for Multi-dimensional analysis capability. OLAP is an Online Analytical Processing database that has a comprehensive list of atmospheric entry probes and their vehicle dimensions, trajectory data, aero-thermal data and material properties like Carbon, Silicon and Carbon-Phenolic based Ablators. An approach is presented for dynamic TPS design. OLAP has the capability to run in one simulation several different trajectory conditions and the output is stored back into the database and can be queried for appropriate trajectory type. An OLAP simulation can be setup by spawning individual threads to run for three types of trajectory:Nominal,Undershoot and Overshoot trajectory. Sparta graphical user interface provides capabilities to choose from a list of flight vehicles or enter trajectory and geometry information of a vehicle in design. DOTNET framework acts as a middleware layer between the trajectory engine and the user interface and also between the web user interface and the OLAP database. Trajectory output can be obtained in TecPlot format, Excel output or in a KML (Keyhole Markup Language) format. Framework employs an API (application programming interface) to convert trajectory data into a formatted KML file that is used by Google Earth for simulating Earth-entry fly-by visualizations.

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Linearization and simulation of two-temp systems;INTERNATIONAL CONFERENCE ON INFORMATICS, TECHNOLOGY, AND ENGINEERING 2021 (InCITE 2021): Leveraging Smart Engineering;2022

2. An Optical Smartphone-Based Inspection Platform for Identification of Diseased Orchids;Biosensors;2021-09-30

3. Using Aerothermodynamic Similarity to Experimentally Study Nonequilibrium Giant Planet Entry;Journal of Spacecraft and Rockets;2020-09

4. Theoretical and experimental study of helium-neon substitution for Saturn entry radiation;AIAA Aviation 2019 Forum;2019-06-15

5. Numerical Investigation of Gas-Surface Interactions due to Ablation of High-Speed Vehicles;Journal of Spacecraft and Rockets;2016-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3