Affiliation:
1. Division of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
2. Department of Communications Engineering, Faculty of Engineering, Al-Hussein Bin Talal University, Ma’an, Jordan
Abstract
Internet-of-Things (IoT) networks generally contain resource-constrained devices that require an energy-efficient key generation procedure to producing secure keys at a faster rate. The physical characteristics of the wireless channel can be exploited to secure communication within IoT networks. In particular, secret keys can be generated by leveraging on the randomness of the wireless physical channel between two communicating parties. The conventional mechanism of generating keys at the physical layer, i.e., using channel probing, quantization, information reconciliation, and privacy amplification, may not be preferable for IoT devices. In addition, in some cases IoT devices may be deployed in static environments, wherein the channel coherence time is too high to generate keys at a faster rate and with the desired randomness. This study proposes a mapping table-based key distribution scheme for IoT environments, wherein multiple characteristics of the random channel are combined to improve not only the key generation rate (KGR) but also the key agreement rate (KAR) and bit error rate (BER). In the proposed scheme, both the channel magnitude and the phase are exploited in the key generation process. The proposed scheme is immune to channel estimation errors while providing sufficient randomness in the static environment. Additionally, the scheme is thoroughly investigated for different scenarios including the case of a smarter eavesdropper, which attempts to estimate the channel between the legitimate nodes. This case verifies the robustness of the proposed scheme in different settings and attack models.
Funder
NATO Science for Peace and Security Programme
Subject
Computer Networks and Communications,Information Systems
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献