A Channel State Information-Based Key Generation Scheme for Internet of Things

Author:

Usman Muhammad1ORCID,Althunibat Saud2ORCID,Qaraqe Marwa1ORCID

Affiliation:

1. Division of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar

2. Department of Communications Engineering, Faculty of Engineering, Al-Hussein Bin Talal University, Ma’an, Jordan

Abstract

Internet-of-Things (IoT) networks generally contain resource-constrained devices that require an energy-efficient key generation procedure to producing secure keys at a faster rate. The physical characteristics of the wireless channel can be exploited to secure communication within IoT networks. In particular, secret keys can be generated by leveraging on the randomness of the wireless physical channel between two communicating parties. The conventional mechanism of generating keys at the physical layer, i.e., using channel probing, quantization, information reconciliation, and privacy amplification, may not be preferable for IoT devices. In addition, in some cases IoT devices may be deployed in static environments, wherein the channel coherence time is too high to generate keys at a faster rate and with the desired randomness. This study proposes a mapping table-based key distribution scheme for IoT environments, wherein multiple characteristics of the random channel are combined to improve not only the key generation rate (KGR) but also the key agreement rate (KAR) and bit error rate (BER). In the proposed scheme, both the channel magnitude and the phase are exploited in the key generation process. The proposed scheme is immune to channel estimation errors while providing sufficient randomness in the static environment. Additionally, the scheme is thoroughly investigated for different scenarios including the case of a smarter eavesdropper, which attempts to estimate the channel between the legitimate nodes. This case verifies the robustness of the proposed scheme in different settings and attack models.

Funder

NATO Science for Peace and Security Programme

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3