Facial Recognition System Based on Genetic Algorithm Improved ROI-KNN Convolutional Neural Network

Author:

Wang Xiao1ORCID,Li Yan1ORCID

Affiliation:

1. Xi'an FanYi University, Xi’an, 710105 Shaanxi, China

Abstract

The facial recognition system is an application tool that uses artificial intelligence technology and biometrics technology to analyze and recognize the facial feature information of the human face. It is widely used in various fields, such as attendance and access control management in schools and companies, identity monitoring in stations and stores, facial recognition for fugitive criminals, and facial payment on mobile terminals. However, due to the short development time of the facial recognition system, the facial recognition system has the problem of low recognition accuracy when the recognized object is not cooperative. Although some scholars have proposed the region of interest (ROI)-K nearest neighbor algorithm (KNN) convolutional neural network theory by using the ROI and KNN and applied it to face recognition, the facial recognition system based on ROI-KNN convolutional neural network did not solve the problems of insufficient facial recognition accuracy and insufficient security. Under the conditions of insufficient illumination, excessive expression change, occlusion, high similarity of different individuals, and dynamic recognition, the recognition effect of the facial recognition system based on the ROI-KNN convolutional neural network is relatively limited. Therefore, to make the recognition accuracy of the facial recognition system higher and to make the facial recognition system play a greater role in the social and economic fields, this paper used the adaptive quantum genetic algorithm, the improved marker line graph genetic algorithm, and the feature weight value genetic algorithm to study the facial recognition system of the ROI-KNN convolutional neural network. The research results showed that after improving the ROI-KNN convolutional neural network based on the genetic algorithm, the recognition accuracy of the facial recognition system was increased by 4.99%, the recognition speed was increased by 7.46%, and the recognition security was increased by 2.66%.

Funder

13th Five-Year Education Planning Project

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Bioengineering,Medicine (miscellaneous),Biotechnology

Reference19 articles.

1. Automatic facial expression recognition system using deep network-based data fusion;A. Majumder;IEEE Transactions on Cybernetics,2017

2. Accurate and robust facial expression recognition system using real-time YouTube-based datasets

3. A Novel Facial Expression Recognition System using BMCSA Based Adaptive Neuro-Fuzzy Inference System

4. An intelligent facial expression recognition system with emotion intensity classification

5. Automatic attendance monitoring system using facial recognition through feature-based methods;S. Karthick;Materials Today: Proceedings,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3