Modelling of Joint Crowd-Structure System Using Equivalent Reduced-DOF System

Author:

Sim Jackie1,Blakeborough Anthony2,Williams Martin2

Affiliation:

1. Mott MacDonald, St Anne House, Wellesley Road, Croydon CR9 2UL, UK

2. Department of Engineering Science, University of Oxford, UK

Abstract

For human assembly structures in which the mass of the crowd is significant compared to that of the structure, it is necessary to model the passive crowd as a dynamic system added to the main structural system. Earlier work by the authors has analysed the frequency response of a joint crowd-structure system in which the structure is treated as a single degree-of-freedom (SDOF) system and the seated and standing crowds are each modelled as a two degree-of-freedom (2DOF) system. It was found that the occupied structure has dynamic properties different to the empty structure. This paper investigates representing the joint crowd-structure system as an equivalent reduced-DOF system that would have the advantage of simplifying the analysis. The modal properties of the equivalent reduced-DOF system, if known, can give a useful indication of how the passive crowd affects the modal properties of the occupied structure. Two equivalent reduced-DOF systems are investigated – SDOF and 3DOF systems. The errors between the responses of the equivalent systems and the full model are calculated and presented in the paper. The results show that the full model exhibits the behaviour of a SDOF system for structures with natural frequencies less than 4 Hz (when empty), whereas for structures with natural frequencies above 4 Hz the equivalent 3DOF system gives a better fit to the full model.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3