Neural Network-Based Routing Energy-Saving Algorithm for Wireless Sensor Networks

Author:

Pang Lili1ORCID,Xie Jiaye1,Xu Qiqing1

Affiliation:

1. Industrial Center, Nanjing Institute of Technology, Nanjing 211167, China

Abstract

With the evolvement, standards have changed, mobile Internet technology has also been upgraded, and it has also driven the development of smart objects mobile. With the continuous development of smart objects mobile, the bottleneck of small node size and low battery energy storage has not been solved in the end, which makes the research of wireless sensor network energy-saving technology become the focus, and the improvement of routing technology is an effective way to improve energy-saving technology. From the data transmission energy consumption of smart objects mobile, the routing algorithm of smart objects mobile is discussed and analyzed and the classical representative LEACH is the object of in-depth research. Routing algorithms can easily and reliably process network data and make the network work well and are widely used in highly secure military systems and smaller commercial networks. Aiming at these deficiencies, a corresponding improved algorithm is proposed, and it is tested through simulation and specific experiments to verify the correctness and the system’s reliability. The SMPSO-BP algorithm converges when the number of iterations is about 600, which is earlier than the LEACH algorithm and the improved LEACH algorithm, so the SMPSO-BP algorithm is due to the other two algorithms. In the wireless sensor network routing energy consumption experiment, in addition, the SMPSO-BP algorithm uses less energy than the other two methods. Therefore, the energy-saving algorithm under the neural network data fusion mechanism is still feasible.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3