Affiliation:
1. Department of Software Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
2. Department of Business Intelligence & Analytics, Stevens Institute of Technology, Hoboken 07030, USA
Abstract
Complex and diverse information is flooding entire networks because of the rapid development of mobile Internet and information technology. Under this condition, it is difficult for a person to locate and access useful information for making decisions. Therefore, the personalized recommendation system which utilizes the user’s behaviour information to recommend interesting items emerged. Currently, collaborative filtering has been successfully utilized in personalized recommendation systems. However, under the condition of extremely sparse rating data, the traditional method of similarity between users is relatively simple. Moreover, it does not consider that the user’s interest will change over time, which results in poor performance. In this paper, a new similarity measure method which considers user confidence and time context is proposed to preferably improve the similarity calculation between users. Finally, the experimental results demonstrate that the proposed algorithm is suitable for the sparse data and effectively improves the prediction accuracy and enhances the recommendation quality at the same time.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,General Computer Science,Signal Processing
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献