Middermal Elastolysis: Dermal Fibroblasts Cooperate with Inflammatory Cells to the Elastolytic Disorder

Author:

De Cunto Giovanna1ORCID,Lamberti Arianna2,de Santi Maria Margherita3,Miracco Clelia4ORCID,Fimiani Michele2,Lungarella Giuseppe1ORCID,Cavarra Eleonora1ORCID

Affiliation:

1. Department of Molecular and Developmental Medicine, Section of General Pathology, University of Siena, Via Aldo Moro 6, 53100 Siena, Italy

2. Department of Medicine, Surgery, and Neurosciences, Unit of Dermatology, University of Siena, Viale Bracci, 53100 Siena, Italy

3. Unit of Pathological Anatomy, AOU Siena, Viale Bracci, 53100 Siena, Italy

4. Department of Medicine, Surgery, and Neurosciences, Unit of Pathological Anatomy, University of Siena, Viale Bracci, 53100 Siena, Italy

Abstract

Little is known about the cause and pathophysiology of middermal elastolysis (MDE). In this condition, variable inflammatory infiltrate may be present or not together with loss of elastic fibres in the middermis that spares both papillary and lower reticular dermis. MDE may be a consequence of abnormal extracellular matrix degradation related to an imbalance between elastolytic enzymes released from inflammatory and resident cells and their naturally occurring inhibitors. However, the cause of this imbalance is still an object of investigation. In order to shed light on the role of fibroblasts in MDE, we used fibroblast cultures from MDE and control subjects to evaluate matrix metalloproteinases (MMPs) and their major inhibitor TIMP-1, which in combination with neutrophil or macrophage proteases released in inflamed areas may influence the elastolytic burden. We demonstrate that fibroblasts derived from MDE produce in vitro low levels of TIMP-1, the major inhibitor of MMPs. Elevated levels of MMP-2, MMP-14, and TIMP-2 capable to activate in a cooperative manner pro-MMP-2 are present in MDE tissue samples. Additionally, significant reaction for MMP-1 is present in the same MDE areas. These data all together suggest that ECM changes in MDE are due to cooperation of different cell populations (i.e., inflammatory cells and fibroblasts).

Publisher

Hindawi Limited

Subject

Cell Biology,Immunology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3